E(|X_t|^p)&=&\int_0^{\infty}py^{p-1}P(|X_t|>y)dy\\
&\leq &\int_0^{\infty}py^{p-1}\exp(-py)E(\exp(|pX_t|))dy\\
&\leq & p(E(\exp(pX_t))+E(\exp(-pX_t))\int_0^{\infty}y^{p-1}\exp(-py)dy\\
&\leq & p\bigg(1+\frac{p}{2t(2-p)}+\frac{\Gamma (p/2+1)}{(2t)^{p/2+2}}\bigg)\frac{\Gamma (p)}{p^p}\\
&\leq & \bigg(1+\frac{p}{2(2-p)}+\Gamma (p/2+1)\bigg)\frac{\Gamma (p)}{p^{p-1}}<\infty \quad (t\geq 1)
Embed the image to your blog in HTML, Markdown, Textile, BBCode.
Recent Referers:
  1. http://formula.s21g.com/?E(%7CX_t%7C%5Ep)%26%3D%26%5Cint_...
  2. https://mkprob.hatenablog.com/entry/20120722/1342959274
  3. https://mkprob.hatenablog.com/
  4. http://formula.s21g.com/?E(%7CX_t%7C%5Ep)%26%3D%26%5Cint_...
  5. http://mkprob.hatenablog.com/?page=1343480443