Share The Formula You Found

+Label +Description

Recently Referred Formulae

P = \int_\Omega f(\overline{x}) d\overline{x}.
\delta=\int_{0}^{1}\frac{f'(x)}{\sqrt{1-x^2}}dx+\frac{\pi}{2}\chi(1)
A_H & \approx & \frac{3k_BT}{4}\left(\frac{\varepsilon_s(0)-\varepsilon_m(0)}{\varepsilon_s(0)+\varepsilon_m(0)}\right)\left(\frac{\varepsilon_t(0)-\varepsilon_m(0)}{\varepsilon_t(0)+\varepsilon_m(0)}\right)
\\
& + & \frac{\hbar\omega_e}{
8\sqrt{2}}\frac{\left(n_s^2-n_m^2\right)\left(n_s^2-n_m^2\right)}{\left(n_s^2+n_m^2\right)^{1/2}\left(n_s^2+n_m^2\right)^{1/2}\left[\left(n_s^2+n_m^2\right)^{1/2}+\left(n_s^2+n_m^2\right)^{1/2}\right]}
F_{EDL}=\frac{2\pi R}{\varepsilon_{m}\kappa}\left[\left(\sigma_t^2+\sigma_s^2\right)e^{-2\kappa d}+2\sigma_t \sigma_s\right]\frac{1}{1-e^{-2\kappa d}}
F_{vdw}=-\frac{A_HR}{6d^{2}}