Share The Formula You Found

+Label +Description

Recently Referred Formulae

\setlength{\unitlength}{3cm}
\begin{picture}(1.75, 2.75)(0, -0.1)
  \put(0,0){\vector(1,0){1.75}} 
  \put(1.85, -0.03){$x$}
  \put(0,0){\vector(0,1){2.75}} 
  \put(0.07, 2.70){$y$}
  \thicklines
  \qbezier(0.399, 0.467)(0.797, 0.998)
          (1.118, 1.962)
  \thinlines
  \multiput(0.399, 0)(0, 0.1){3}
           {\line(0,1){0.05}}
  \multiput(1.118, 0)(0, 0.1){20}
           {\line(0,1){0.05}}
  \put(0.399, -0.08){\makebox(0,0){$x_1$}}
  \put(1.118, -0.08){\makebox(0,0){$x_2$}}
  \multiput(0.399, 0.467)(0, -0.267){2}
           {\line(-1, 0){0.2}}
  \multiput(0.399, 0.467)(-0.2, 0){2}
           {\line(0, -1){0.267}}
  \put(0.399, 0.467){\vector(-1, 0){0.2}}
  \put(0.399, 0.467){\vector(0, -1){0.267}}
  \put(0.399, 0.467){\vector(-3, -4){0.2}}
  \put(0.32,0.55){\makebox(0,0){$H$}}
  \put(0.48, 0.33){\makebox(0,0){$V_1$}}
  \multiput(1.118, 1.962)(0, 0.6){2}
           {\line(1,0){0.2}}
  \multiput(1.118, 1.962)(0.2, 0){2}
           {\line(0,1){0.6}}
  \put(1.118, 1.962){\vector(1,0){0.2}}
  \put(1.118, 1.962){\vector(0,1){0.6}}
  \put(1.118, 1.962){\vector(1,3){0.2}}
  \put(1.22, 1.87){\makebox(0,0){$H$}}
  \put(1.02, 2.22){\makebox(0,0){$V_2$}}
  \put(0.797, 1.195){\vector(0,-1){0.333}}
  \put(0.777, 1.195){\line(1,0){0.04}}
  \put(0.83,1.0){$G$}
\end{picture}
\setlength{\unitlength}{3cm}
\begin{picture}(1.75, 2.75)(0, -0.1)
  \put(0,0){\vector(1,0){1.75}} 
  \put(1.85, -0.03){$x$}
  \put(0,0){\vector(0,1){2.75}} 
  \put(0.07, 2.70){$y$}
  \thicklines
  \qbezier(0.399, 0.467)(0.797, 0.998)
          (1.118, 1.962)
  \thinlines
  \multiput(0.399, 0)(0, 0.1){3}
           {\line(0,1){0.05}}
  \multiput(1.118, 0)(0, 0.1){20}
           {\line(0,1){0.05}}
  \put(0.399, -0.08){\makebox(0,0){$x_1$}}
  \put(1.118, -0.08){\makebox(0,0){$x_2$}}
  \multiput(0.399, 0.467)(0, -0.267){2}
           {\line(-1, 0){0.2}}
  \multiput(0.399, 0.467)(-0.2, 0){2}
           {\line(0, -1){0.267}}
  \put(0.399, 0.467){\vector(-1, 0){0.2}}
  \put(0.399, 0.467){\vector(0, -1){0.267}}
  \put(0.399, 0.467){\vector(-3, -4){0.2}}
  \put(0.32,0.55){\makebox(0,0){$H$}}
  \put(0.48, 0.33){\makebox(0,0){$V_1$}}
  \multiput(1.118, 1.962)(0, 0.6){2}
           {\line(1,0){0.2}}
  \multiput(1.118, 1.962)(0.2, 0){2}
           {\line(0,1){0.6}}
  \put(1.118, 1.962){\vector(1,0){0.2}}
  \put(1.118, 1.962){\vector(0,1){0.6}}
  \put(1.118, 1.962){\vector(1,3){0.2}}
  \put(1.22, 1.87){\makebox(0,0){$H$}}
  \put(1.02, 2.22){\makebox(0,0){$V_2$}}
  \put(0.797, 1.195){\vector(0,-1){0.333}}
  \put(0.777, 1.195){\line(1,0){0.04}}
  \put(0.83,1.0){$G$}
\end{picture}
"><img src="http://formula.s21g.com/?\setlength{\unitlength}{3cm}
\begin{picture}(1.75, 2.75)(0, -0.1)
  \put(0,0){\vector(1,0){1.75}} 
  \put(1.85, -0.03){$x$}
  \put(0,0){\vector(0,1){2.75}} 
  \put(0.07, 2.70){$y$}
  \thicklines
  \qbezier(0.399, 0.467)(0.797, 0.998)
          (1.118, 1.962)
  \thinlines
  \multiput(0.399, 0)(0, 0.1){3}
           {\line(0,1){0.05}}
  \multiput(1.118, 0)(0, 0.1){20}
           {\line(0,1){0.05}}
  \put(0.399, -0.08){\makebox(0,0){$x_1$}}
  \put(1.118, -0.08){\makebox(0,0){$x_2$}}
  \multiput(0.399, 0.467)(0, -0.267){2}
           {\line(-1, 0){0.2}}
  \multiput(0.399, 0.467)(-0.2, 0){2}
           {\line(0, -1){0.267}}
  \put(0.399, 0.467){\vector(-1, 0){0.2}}
  \put(0.399, 0.467){\vector(0, -1){0.267}}
  \put(0.399, 0.467){\vector(-3, -4){0.2}}
  \put(0.32,0.55){\makebox(0,0){$H$}}
  \put(0.48, 0.33){\makebox(0,0){$V_1$}}
  \multiput(1.118, 1.962)(0, 0.6){2}
           {\line(1,0){0.2}}
  \multiput(1.118, 1.962)(0.2, 0){2}
           {\line(0,1){0.6}}
  \put(1.118, 1.962){\vector(1,0){0.2}}
  \put(1.118, 1.962){\vector(0,1){0.6}}
  \put(1.118, 1.962){\vector(1,3){0.2}}
  \put(1.22, 1.87){\makebox(0,0){$H$}}
  \put(1.02, 2.22){\makebox(0,0){$V_2$}}
  \put(0.797, 1.195){\vector(0,-1){0.333}}
  \put(0.777, 1.195){\line(1,0){0.04}}
  \put(0.83,1.0){$G$}
\end{picture}
\gamma\alpha\gamma!
L(\vec{x},\vec{\omega}) = L_e + \int_\Omega f_r(\vec{\omega}, \vec{\omega}') \> L_i(\vec{x},\vec{\omega}') \> (\vec{N}\cdot \vec{\omega'}) \; \vec{\omega}'
L(\vec{x},\vec{\omega}) = L_e + \int_\Omega f_r(\vec{\omega}, \vec{\omega}') \><br />L_i(\vec{x},\vec{\omega}') \> (\vec{N}\cdot \vec{\omega'}) \; d\vec{\omega}'