Share The Formula You Found

+Label +Description

Recently Referred Formulae

\begin{pmatrix}
P_A(i) \\
P_B(i) \\
\end{pmatrix}
=
\begin{pmatrix}
3/4 & 1 \\
1/4 & 0 \\
\end{pmatrix}
^i
\begin{pmatrix}
P_A(0) \\
P_B(0) \\
\end{pmatrix}
\begin{pmatrix}
P_A(i+1) \\
P_B(i+1) \\
\end{pmatrix}
=
\begin{pmatrix}
3/4 & 1 \\
1/4 & 0 \\
\end{pmatrix}
\begin{pmatrix}
P_A(i) \\
P_B(i) \\
\end{pmatrix}
\begin{pmatrix}
P_A(i) \\
P_B(i) \\
\end{pmatrix}
=
\begin{pmatrix}
\frac{2}{3} - \frac{2 \left(- \frac{1}{2}\right)^{i}}{3}\\
\frac{2 \left(- \frac{1}{2}\right)^{i}}{3} + \frac{1}{3}
\end{pmatrix}
\begin{pmatrix}
P_A(i) \\
P_B(i) \\
\end{pmatrix}
=
\begin{pmatrix}
\frac{\left(- \frac{1}{2}\right)^{i}}{3} + \frac{2}{3}\\
\frac{1}{3} - \frac{\left(- \frac{1}{2}\right)^{i}}{3}
\end{pmatrix}
\begin{pmatrix}
P_A(i) \\
P_B(i) \\
\end{pmatrix}
=
\begin{pmatrix}
\frac{\left(- \frac{1}{2}\right)^{n}}{3} + \frac{2}{3}\\
\frac{1}{3} - \frac{\left(- \frac{1}{2}\right)^{n}}{3}
\end{pmatrix}