Share The Formula You Found

+Label +Description

Recently Referred Formulae

{\rm E}\left[ \sum_{i,j} {\cal R}_i {\cal R}_j \right] &=& 2{\rm E}\left[\sum_{j>i}{\cal R}_i {\cal R}_j \right]   {\rm E}\left[ \sum_{i=1}^N{\cal R}_i^2 \right] \\
 &=& 2 \sum_{j>i}\mu^{j-i}(\mu^2   \sigma^2)^{N-j 1}   \sum_{i=1}^N (\mu^2   \sigma^2)^i
{\rm d}y &=& \frac{1}{x}{\rm d}x - \frac{1}{2x^2} ({\rm d}x)^2\\
 &=& \frac{1}{x}(\mu x {\rm d}t   \sigma x {\rm d}W_t) - \frac{1}{2x^2}(\sigma^2 x^2 {\rm d}t)\\
 &=& (\mu - \frac{1}{2}\sigma^2){\rm d}t   \sigma {\rm d}W_t
{\rm V}[R_1 R_2 \cdots R_N] &=& (\sigma^2   \mu^2)^N - \mu^{2N} \\
 &=& \sum_{i=0}^N {}_N C_i \sigma^{2i}\mu^{2(N-i)} - \mu^{2N} \\
 &=& \sum_{i=1}^N {}_N C_i \sigma^{2i}\mu^{2(N-i)}
\mathrm{p}_{ij} = \left\{ \begin{array}{ll}
i^2/N^2 & j=i-1 \\
2i(N-i)/N^2 & j=i \\
(N-i)^2/N^2 & j=i 1 \\
0 & \mathrm{otherwise}
\end{array} \right.
&& {\rm scan}\;\;(\oplus)\;\;[a_0, \cdots , a_n] \\
&& = [a_0, a_0 \oplus a_1, \cdots , a_0 \oplus \cdots \oplus a_n] \\
&& \equiv [b_0, \cdots, b_n]