\frac{\partial F(y,y')}{\partial y}-\frac{d}{dx}(\frac{\partial F(y,y')}{\partial y'})=0\\
\frac{1}{y'}\frac{dF}{dx}-\frac{1}{y'}\frac{\partial F}{\partial y'}\frac{dy'}{dx}-\frac{d}{dx}(\frac{\partial F}{\partial y'})=0\\
\frac{1}{dx}(F-y'\frac{\partial F}{\partial y'})=0\\
\frac{1}{\sqrt{2gy(1+y'^2)}}=C(const.)\\
y(1+y'^2)=\frac{1}{2gC^2}
Embed the image to your blog in HTML, Markdown, Textile, BBCode.
Recent Referers:
  1. http://formula.s21g.com/?%5Cfrac%7B%5Cpartial%20F%28y,y%2...