Share The Formula You Found

+Label +Description

Recently Referred Formulae

a_n = \frac{n!}{\sqrt{2\pi}n^{n+1/2}e^{-n+1/(12n)}}\\
b_n = \frac{n!}{\sqrt{2\pi}n^{n+1/2}e^{-n}}
\phi(\overline{X}_n)\equiv\left\{\begin{array}{cc} 1 & \mu\in I(\overline{X}_n)\\ 
                                 0 & \mu\notin I(\overline{X}_n)\end{array}\right.
P\left(\left|\displaystyle\frac{\sqrt{n}(\overline{X}_n - \mu)}{\tilde{\sigma}_n}\right|<t(n-1, \alpha / 2)\right)=1-\alpha\\
X_i
\overline{X}_n\equiv\frac{1}{n}\sum^n_{i=1}X_i, \quad \tilde{\sigma}^2_n\equiv\frac{1}{n-1}\sum^n_{i=1}(X_i - \overline{X}_n)^2\\
T_s\equiv\displaystyle\frac{\sqrt{n}(\overline{X}_n - \mu)}{\tilde{\sigma}_n}  \\